
Diffusion-driven lensless fiber
endomicroscopic quantitative phase
imaging towards digital pathology

This document provides supplementary information to "Diffusion-driven lensless fiber endomi-
croscopic quantitative phase imaging towards digital pathology". Included are supplementary
figures for phase reconstruction on ImageNet, resolution test chart, human tissue images and the
IoU distribution in the cell segmentation task.

1. EXPERIMENTAL SETUP FOR DATA ACQUISITION

The optical setup for training data acquisition is demonstrated in Fig. S1. The system employs
a modulated laser beam (532nm ,Verdi, Coherent Inc.), which is expanded using a telescope
system (L1-L2) to ensure uniform illumination on the SLM. The SLM displays the phase image,
thereby modulating the phase of the laser beam. To remove unwanted diffraction orders, a spatial
filtering system (L3-L4, ID) is utilized. The phase-modulated beam is then projected onto the
proximal facet of the MCF (FIGH-350S; Fujikura) at the measurement side, using a microscope
system (L5, MO1; 10× plan achromat objective, 0.25 NA, Olympus). A part of the incident beam
is reflected by the MCF facet at the measurement side and directed onto the alignment camera
(CAM1; uEye LE, IDS), facilitating the precise alignment between the holographic display plane
and the fiber facet. Far-field speckle images are captured on the detection camera (CAM2; uEye
CP, IDS) through an additional microscope system (MO2, L6, LP2; 10× plan fluo objective, 0.3
NA, Nikon).

Fig. S1. Scheme of the optical system for training dataset acquisition. The real phase images
are displayed on the SLM and then projected on the MCF facet at the measurement side. The
SLM and the detection camera (CAM2) are synchronously triggered to record the correspond-
ing paired phase and speckle images. LP1 and LP2, linear polarizer; L1-L6, achromatic lenses;
M1 and M2, mirrors; ID, iris diaphragm; BS, beam spliter; CAM1, alignment camera; MO1 and
MO2, microscope objectives.

2. PHASE RECONSTRUCTION WITH DIFFERENT INITIALIZATION

In our experiment, the phase reconstruction results of SpecDiffusion demonstrate robustness to
random initialization. As illustrated in Fig. S2, under three different initializations, SpecDiffusion



Table S1. Averaged evaluation metrics of U-Net and SpecDiffusion on ImageNet

Method MAE (rad) PSNR SSIM 2D Correlation

U-Net 0.1143 19.63 0.5410 0.8394

SpecDiffusion 0.0879 21.72 0.6707 0.8989

successfully reconstructs the phase image in each case, and the reconstructed images are highly
similar to each other. This indicates that SpecDiffusion effectively extracts image information
from MCF speckles to adapt the reconstruction process for each random initialization, robustly
transforming the initial image into the target phase.
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Fig. S2. Phase reconstruction of complex images through the MCF with different initialization.
a Ground truth phase images. b Speckle patterns from MCF. c Reconstructed phase images by
SpecDiffusion under different initializations. Scale bars 50µm.

3. PHASE RECONSTRUCTION ON COMPLEX IMAGES FROM IMAGENET

To more comprehensively demonstrate the superior reconstruction results achieved by SpecDiffu-
sion, we present an expanded collection of reconstructed images along with the distribution of
their performance metrics across the test set, as illustrated in Fig. S3. The averaged evaluation met-
rics are summarized in Tab. S1. Compared to U-Net [1], SpecDiffusion enhances all performance
metrics on ImageNet [2]. These improvements confirm SpecDiffusion’s capacity to accurately
reconstruct phase image from the speckle, indicating its effectiveness in MCF endoscope.

4. RESOLUTION CHART RECONSTRUCTION

In our experiment, U-Net’s resolution capacity on the test chart is limited to separating lines in
Group 3, Element 3, as depicted in Fig. S4.c. Nevertheless, the reconstructed lines suffer from
severe blurring and content missing. In comparison, the reconstruction result of SpecDiffusion,
as depicted in Fig. S4.d, demonstrates a clearer and more detailed recovery of the lines. The
resolution capacity difference is further verified in Fig.S4.e, where SpecDiffusion achieves a
higher contrast between peaks and valleys in the reconstructed image. SpecDiffusion’s superior
resolution capacity enables it to reconstruct detailed regions more effectively than U-Net, thus
providing more information in practical application.

5. TISSUE RECONSTRUCTION

In the experiment setup, we simulate the phase retrieval process of tissues using a SLM. The
human tissue images are sourced from Stanford Tissue Microarray Database [3]. Throughout the
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Fig. S3. Phase reconstruction of ImageNet images through the MCF. a Speckle patterns from
MCF. b Ground truth phase images. c and d Reconstructed phase images by U-Net and SpecD-
iffusion. e-g PSNR, SSIM and 2D correletion coefficient distribution of U-Net and SpecDiffu-
sion on the test set. Scale bars 50µm.

experiment process, the tissue images are converted into computer-generated holograms and
subsequently projected onto the SLM. The resulting speckles are captured from the detection side
of MCF. For the transfer learning process, both SpecDiffusion and U-Net are initially pretrained
on the ImageNet dataset, and then undergo transfer learning on a limited set of tissue images.
Their performance is evaluated on a separate set of 1, 000 images.

To better illustrate our reconstruction results on human tissue dataset [3], we display more
reconstructed images and their corresponding residual maps in Fig. S5. The distinction is par-
ticularly evident when examining the residual maps of reconstructed phase images from both
models, as illustrated in Fig. S5.e. The residual map for the U-Net reconstructed phase image
exhibits numerous details of the tissue, indicating a considerable deviation from the original
image in terms of both structural detail and texture. Conversely, the residual map of the SpecDif-
fusion reconstructed phase image demonstrates a much lower overall amplitude, suggesting a
higher similarity to the original image. Notably, the residuals in SpecDiffusion’s map primarily
concentrate around the cell outlines. This observation is crucial because the outlines of cells are
where information is most susceptible to being lost, especially considering the discrete distribu-
tion of fiber cores in a Multi-Core Fiber (MCF). To illustrate the phase reconstruction process of
SpecDiffusion, we record a video in Visualization 1. The SpecDiffusion model is pretrained on
ImageNet and then undergoes a transfer learning with a tissue dataset of 150 images. It takes 100
denoising steps to finish the phase reconstruction process.

Our another experiment focuses on the impact of varying the number of denoising steps on the
reconstruction quality of SpecDiffusion, as depicted in Fig. S6. As the denoising steps increase,
all evaluated metrics get improved, indicating higher reconstruction quality. The reconstruction
quality reaches its optimum when the denoising steps are increased to 100. At this stage, at this
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Fig. S4. Phase reconstruction of USAF resolution chart. a Speckle pattern from MCF. b Ground
truth. c U-Net reconstructed phase image. d SpecDiffusion reconstructed phase image. e Phase
reconstruction constrast between U-Net and SpecDiffusion. Scale bars 50µm

time, the reconstruction speed achieves 1.77 FPS, which is acceptable for medical scenarios where
time sensitivity is less critical.

6. CELL SEGMENTATION

In cell segmentation task, we adopt IoU to quantitatively assess the segmentation results of
reconstructed images. IoU measures the agreement between segmentation results derived from
reconstructed images and their ground truth counterparts. The IoU distributions of U-Net and
SpecDiffusion are illustrated in Fig. S7. It reveals a distinctly superior IoU distribution for
SpecDiffusion compared to U-Net, with a significant portion of SpecDiffusion’s results clustering
within the higher IoU range. The superiority of SpecDiffusion’s segmentation results not only
highlights its advanced reconstruction capabilities, but also signifies its potential to significantly
maintain the performance of downstream tasks.

7. EVALUATION METRICS

In our experiment, we employ Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), 2D Correlation coefficient as the evaluation metrics for
reconstructed phase images. These metrics provide a quantitative measure of the reconstruction
fidelity.

The mean absolute error (MAE) is a critical metric for assessing the accuracy of reconstructed
images, particularly in the context of phase reconstruction. It measures the average of the
absolute differences between the original phase image and the reconstructed phase image, across
all pixels. A lower MAE value indicates a closer match between the reconstructed and original
phases, signifying higher fidelity in the reconstruction process. This high fidelity is crucial for
applications that rely on precise phase information, such as in the calculation of biophysical
properties including refractive index, cell volume and dry mass. For original image I and
reconstructed image I′, the MAE is calculated as:

MAE(I, I′) =
1

mn

m−1

∑
i=0

n−1

∑
j=0

|I(i, j)− I′(i, j)|. (S1)

The peak signal-to-noise ratio (PSNR) is a widely utilized metric in the field of image processing
to evaluate the quality of reconstructed images relative to their originals. It quantifies the ratio of
the maximum possible power of the original image to the power of corrupting noise that affects the
fidelity of the reconstructed image. Essentially, PSNR measures the level of distortion introduced
into the original image upon reconstruction, which also reflects the amount of information
derived from the speckle. A higher PSNR value typically indicates more information derived
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Fig. S5. Tissue reconstruction results by SpecDiffusion and U-Net. a Speckle patterns from
MCF. b Ground truth phase images. c and e Reconstructed phase images by U-Net and SpecD-
iffusion. d and f Residual maps of the reconstructed tissue images by U-Net and SpecDiffusion.
Scale bars 50µm.

from the speckle, implying a higher quality of the reconstructed image. For original image I and
reconstructed image I′, the PSNR is calculated as:

PSNR(I, I′) = 10 · log10[
MAX2

I
MSE(I, I′)

], (S2)

where MAXI is the max pixel value of image I and I′, MSE is the mean square error between
image I and I′, which is calculated as

MSE(I, I′) =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− I′(i, j)]2. (S3)

The structural similarity of index measure (SSIM) [4] is an advanced metric designed to assess
the perceptual quality of images. Unlike traditional metrics that primarily focus on pixel-level
differences, SSIM evaluates the visual impact of three key components: luminance, contrast, and
structure, which correspond to the perception of brightness, contrast, and patterns or textures
in human vision, respectively. For original image I and reconstructed image I′, the SSIM is
calculated as

SSIM(I, I′) =
(2µIµI ′ + c1)(2σI I ′ + c2)

(µ2
I + µ2

I ′ + c1)(σ
2
I + σ2

I ′ + c2)
, (S4)
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Fig. S6. The relationship between denoise step and reconstruction quality of SpecDiffusion. a-d
MAE, PSNR, SSIM and 2D correlation coefficient evaluated by U-Net and SpecDiffusion with
varying denoise step.

Fig. S7. IoU distribution of U-Net and SpecDiffusion in cell segmentation task.

where µ indicates pixel sample mean, σ indicates the variance, c1 and c2 are two variables to
stabilize the division to avoid zero denominator.

The 2D correlation coefficient is a statistical measure that quantifies the degree of linear corre-
lation between two images. It serves as an indicator of the overall fidelity of the reconstructed
image by assessing how well the pixel intensity variations in the reconstructed image match
those in the original image. For original image I and reconstructed image I′, the 2D correlation
coefficient is calculated as

ρI I ′ =
Cov(I, I′)

σIσI ′
, (S5)

where Cov(I, I′) is the convariance between I and I′, σI and σI ′ are the standard variance of I and
I′.

For assessing the accuracy of cell segmentation on the reconstructed images, we adopted the
intersection over union (IoU) metric. IoU quantifies the overlap between two segmentation maps,
thereby providing an assessment of the similarity between the predicted segmentation result and
the ground truth. This metric is particularly effective for comparing the precision of segmentation
boundaries and the overall segmentation quality. For segmentation map M of ground truth and
M′ of reconstructed image, IoU is computed as

IoU(M, M′) =
|M ∩ M′|
|M ∪ M′| , (S6)

where |M ∩ M′| indicates the overlap area between M and M′, |M ∩ M′| indicates the union area
between M and M′.
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